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Abstract

The generalized Taub—NUT metrics exhibit in general gravitational anomalies.
This is in contrast with the fact that the original Taub—-NUT metric does not
exhibit gravitational anomalies, which is a consequence of the fact that it admits
Killing—Yano tensors forming Stidckel-Killing tensors as products. We have
found that for axial anomalies, interpreted as the index of the Dirac operator,
the presence of Killing—Yano tensors is irrelevant. In order to evaluate the
axial anomalies, we compute the index of the Dirac operator with the APS
boundary condition on balls and on annular domains. The result is an explicit
number-theoretic quantity depending on the radii of the domain. This quantity
is 0 for metrics close to the original Taub—NUT metric but it does not vanish in
general.

PACS number: 04.62.+v

1. Introduction

In the case of gravitational interaction, a consistent perturbative quantization is not available,
even if there exist no fermions. It is of crucial importance in the construction of any quantum
theory for gravitation to understand the problem of anomalies which can affect the conservation
laws.

In this paper we shall investigate the quantum anomalies with regard to quadratic constants
of motion in some explicit examples—the Euclidean Taub—Newman—Unti—Tamburino (Taub—
NUT) space [1, 2] and its generalizations as was done by Iwai and Katayama [3-6].

Hidden symmetries are encapsulated into Stickel-Killing (S-K) tensors, i.e. symmetric
tensors k,,, = k,, satisfying the S-K equation

k(p_v;k) =0 (1)
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where a semicolon precedes an index of covariant differentiation. For any geodesic with
tangent (momentum vector) p, a S—K tensor generates a quadratic constant along the geodesic
K = kWPuPu, P = g/w(x)xv, 2

where g is the metric tensor and the over-dot denotes the ordinary proper time derivative.
Passing from the classical motion to the hidden symmetries of a quantized system, the
corresponding quantum operator analogue of the quadratic function (2) is [7, 8]

K = D,k""D, 3)

where D), is the covariant differential operator on the curved manifold. Working out the
commutator of (3) with the scalar Laplacian

H =D, D" = D,g"' D, “)
and taking into account that &, is a S—K tensor satisfying equation (1), we get [7]
[H. K] = —4{KR""} D, (5)

where R,,, is the Ricci tensor. This means that in general the quantum operator /C does not
define a genuine quantum mechanical symmetry [9]. On a generic curved spacetime there
appears a gravitational quantum anomaly proportional to a contraction of the S—K tensor k,,,,
with the Ricci tensor R, .

In general, when the manifold is not Ricci flat the operators constructed from symmetric
S—K tensors are a source of gravitational anomalies for scalar fields. However, when the S—K
tensors admit a decomposition in terms of antisymmetric tensors Killing—Yano (K-Y) [8] the
gravitational anomaly is absent.

The K-Y tensors are profoundly connected with supersymmetric classical and quantum
mechanics on curved spaces where such tensors do exist [10]. The K-Y tensors play an
important role in theories with spin and especially in the Dirac theory on curved spacetimes
where they produce first-order differential operators, called Dirac-type operators, which
anticommute with the standard Dirac one, D [8]. When the K-Y tensors enter as square
roots in the structure of several second-rank S—K tensors, they generate conserved quantities
in pseudo-classical models for fermions [10] or conserved operators in Dirac theory which
commute with D.

In the pseudo-classical approach [10] of the fermions, the absence of the K—Y tensors
hampers the evaluation of the spin contribution to the conserved quantities. Passing to the
Dirac equation in a curved background, the lack of the K-Y tensors makes impossible the
construction of Dirac-type operators and hidden quantum conserved operators commuting
with the standard Dirac one.

Having in mind that the K—Y tensors prevent the appearance of gravitational anomalies for
the scalar field and on the other hand their connection with supersymmetries and Dirac-type
operators, it is natural to investigate whether they play a role also to axial anomalies.

The importance of anomalous Ward identities in particle physics is widely known. The
anomalous divergence of the axial vector current in a background gravitational field has
been largely discussed in the literature and directly related to the index theorem. In even-
dimensional spaces one can define the index of a Dirac operator as the difference in the number
of linearly independent zero modes with eigenvalue +1 and —1 under ys. The index is useful
as a tool to investigate topological properties of the space, as well as in computing anomalies
in quantum field theory.

Here we investigate the continuous transition from the case in which a hidden symmetry
is described by a S—K tensor which can be written as a symmetrized product of K-Y tensors
to the situation in which such a decomposition is not available for lack of K-Y tensors.
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The standard and generalized Taub—NUT metrics are suitable for this task. Let us observe
that in the standard Taub—NUT space there are no gravitational anomalies taking into account
that it is Ricci flat. On the other hand, using the Atiyah—Patodi—Singer index theorem for a
manifold with boundaries it was concluded that the Taub—NUT metric makes no contribution
to the axial anomaly [11-14].

In section 2 we verify explicitly that for generalized Taub-NUT metric the commutator
(5) does not vanish and consequently there are gravitational anomalies.

In the next sections we compute the index of the Dirac operator for the generalized Taub—
NUT metrics with the APS boundary condition and find these metrics do not contribute to the
axial anomaly for not too large deformations of the standard Taub—NUT metric. This result
stands in contrast with the gravitational anomalies for scalar fields discussed in section 2. The
result is natural since the index of an operator is unchanged under continuous deformations of
that operator. In our case this amounts to a continuous change in the metric and the boundary
condition. However, for larger deformations of the metric there do appear discontinuities in
the boundary condition and therefore the index presents jumps. Our formula for the index
involves a computable number-theoretic quantity depending on the coefficients of the metric
and on the radii of the domain.

In section 6 we propose some open problems in connection with unbounded domains.
The last section contains concluding remarks.

2. Gravitational anomalies in generalized Taub—NUT spaces

The Euclidean Taub—NUT metric has lately attracted much attention in physics (see, e.g.,
[15,2]). From the viewpoint of dynamical systems, the geodesic motion in Taub—NUT metric
is known to admit a Kepler-type symmetry [16—-19]. One can actually find the so-called
Runge-Lenz vector as a conserved vector in addition to the angular momentum vector. As
a consequence, all the bounded trajectories are closed and the Poisson brackets among the
conserved vectors give rise to the same Lie algebra as the Kepler problem, depending on the
energy.

Iwai and Katayama [3—6] generalized the Taub—NUT metric so that it still admits a hidden
symmetry of Kepler type.

2.1. Generalized Taub—NUT spaces

The Euclidean Taub—NUT space is a special member of the family of four-dimensional
manifolds equipped with the isometry group Gis, = SO(3) ® U(1). These geometries can
be easily constructed defining the line elements in local charts with spherical coordinates
(r,0, ¢, x); among them the first three are the usual spherical coordinates of the vector
X = (x', x2, x3), with x| = r, while x is the Kaluza—Klein extra-coordinate of this chart.
The spherical coordinates can be associated with the Cartesian ones (x!, x2, x3, x*) where
x* = —j(x + ) is defined using an arbitrary constant & > 0.

The group SO(3) C Gjs has three independent one-parameter subgroups, SO;(2),i =
1,2,3, each one including rotations ®R;(¢), of angles ¢ € [0,27) around the axis i.
With this notation any rotation YR € SO(3) in the usual Euler parametrization reads
R, B,y) = Rs(@)R(B)Rs3(y). Moreover, we can write X = FR(p, 0, 0)X, where
the vector X, = (0,0, r) is invariant under SO3(2) rotations which form its little group
(MR3X, = X,). The main point is to define the action of two arbitrary rotations, R € SO(3) and
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M3 € SO3(2) ~ U(1), in the spherical charts, (R, R3) : (r,0, ¢, x) — (,0', ¢, x), such
that

R, 0", x') = RR(p, 0, NR; . (6)
Hereby it results that the Cartesian coordinates transform under rotations R € SO(3) as
X — ¥ =Ry, =t =xt+ (R X),

where the function 4 is given in [20]. Thus, the vector X transforms according to an usual
linear representation but the transformation of the fourth Cartesian coordinate is governed by
a representation of SO(3) induced by SO3(2) [20]. Furthermore, we observe that the 1-forms

dQ(, 6. x) = R(p. 6, )~ dR(p, 6, x) € 50(2)
transform independently on ‘R as

R, Rs) - dQp, 0, x) — AR, 6, x') = R3dQ(g, 6, )R; '
finding that, beside the trivial quantity ds;> = dr?, there are two types of line elements
invariant under Gig,,

ds,? = —(dQ(p, 6, x)?)33 = dO? +sin® 6 dy?,

dS32 = —% Tr[dS2 (¢, 6, x)?] = dO? + sin? O de? + (dy + cos @ dp)?.

The conclusion is that the most general form of the line element invariant under Gjg, is given by
the linear combination f;(r) ds12 + fo(r) dsz2 + f3(r) dS32 involving three arbitrary functions
ofr, fl, f2 and f3.

Here it is worth pointing out that the above metrics are related to the Berger family of
metrics on 3-spheres [21]. These are introduced starting with the Hopf fibration 7 : §* — §?
that defines the vertical subbundle V C TS* and its orthogonal complement H C TS* with
respect to the standard metric ggs on S°. Denoting with g5 and gy the restriction of gg3 to the
horizontal, respectively the vertical bundle, one finds that the corresponding line elements are

dsy? = % ds,? and dsv2 = %(ds32 — dszz). For each constant & > 0 the Berger metric on s3
is defined by the formula
g = gn +2gv. (7N

In what follows we restrict ourselves to the generalized Taub—NUT manifolds whose
metrics are defined on R* — {0} by the line element

dsg? = &uv () dx? dx”
= f(r)(dr® +r*d6* + r*sin® 0 dp®) + g(r)(dx + cos 6 dp)* 8)

where the angle variables (6, ¢, x) parametrize the sphere Swith0 <0 <7m,0< ¢ <
27,0 < x < 4w, while the functions

a+br ar + br

fr) = ; €))
r

depend on the arbitrary real constants a, b, ¢ and d. This line element can be written in terms
of the Berger metrics as

2 5 (dr? 2
dsg“ = (ar + br°) — + 4ds;q) (10)
r

where ds,\(”z = (gn¢)) v dx* dx” and
1

) = ———
V1 +cr+dr?

(1)
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If one takes the constants
2b b?
c=—, d=—
a a
the generalized Taub—NUT metric becomes the original Euclidean Taub—-NUT metric up to a
constant factor.
By construction, the spaces with the metric (8) have the isometry group Gjs, and, therefore,
they must have four Killing vectors. The corresponding constants of motion in generalized
Taub—NUT backgrounds consist of a conserved quantity for the cyclic variable x

12)

g =g(r)(x +cosbp)

and the angular momentum vector

-

=4 - - X - N
J=xXp+q-—, p= f(r)x.
r
The remarkable result of Iwai and Katayama is that the generalized Taub-NUT space
(8) admits a hidden symmetry represented by a conserved vector, quadratic in 4-velocities,
analogous to the Runge—Lenz vector of the following form:

-

- N - X
K=pxJ+k—. (13)
r
The constant « involved in the Runge-Lenz vector (13) is k = —aFE + %cq2 where the
conserved energy E is
=2 2
__pr 4

2f(r)  28(r)

The components K; = kl” v DDy of the vector K (13) involve three S—K tensors kf‘ Yi=1,2,3
satisfying (1). Moreover, the components of the Runge—Lenz vector fill in the algebra of the
angular momentum up to 0(4), 0(3, 1) or e(3) algebras corresponding to different domains of
the energy spectra, like in the case of the Kepler problem or the Euclidean Taub—-NUT space
[22, 23].

2.2. The role of the K-Y tensors

The gravitational quantum anomaly that does not exist in Ricci-flat manifolds can also be
absent in manifolds which do not have this property if the S—K tensors have a special structure.
We refer to the situation in which the S—K tensor k,, can be written as a product of K-Y
tensors [8].

A K-Y tensor of valence 2 is an antisymmetric tensor f),, satisfying the Killing equation

f,u(v;k) =0. (14)

Let us suppose that there exists a square root of the S—K tensor k,,, of the form of a K-Y
tensor f,, [8]:

kuv = fﬂpfvp~ 15)

In case this should happen, the S—K equation (1) is automatically satisfied and the integrability
condition for any solution of (14) becomes

k[pﬂR,,]p =0. (16)
This relation implies the vanishing of the commutator (5) which means that the scalar quantum

anomaly does not exist for the S—K tensors which admit a decomposition in terms of K-Y
tensors.
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In what follows we shall exemplify the role of the Killing—Yano tensors with regard
to anomalies on the Euclidean Taub—NUT space and its generalizations. The (standard)
Euclidean Taub—NUT space is a hyper-Kéhler manifold possessing a triplet of covariantly
constant K-Y tensors, f i i =1,2,3. In addition, there exists a fourth K-Y tensor, f v
which is not covariantly constant. The presence of this last K—Y tensor is connected with the
existence of the hidden symmetries of the Taub—NUT geometry which are encapsulated in
three non-trivial S-K tensors and interpreted as the components of the so-called Runge-Lenz
vector of geodesic motions in this space. All these S—K tensors are products of f¥ with f? and,
moreover, the manifold is Ricci flat since the metric tensor can also be expressed as a product
of covariantly constant K-Y tensors through [ f/5), = —28;8up [22]. Obviously, for
this metric there are no gravitational anomalies for scalar fields.

Concerning the generalized Taub—NUT metrics, as was done by Iwai and Katayama, it
was proved that the extensions of the Taub—NUT metric do not admit K-Y tensors, even if
they possess S—K tensors [24, 25]. The only exception is the original Taub—NUT metric which
possesses four K—Y tensors of valence two.

Using the S—K tensor components of the Runge—Lenz vector (13) we can proceed to the
evaluation of the quantum gravitational anomaly for the generalized Taub—-NUT metric. A
direct evaluation shows that the commutator (5) does not vanish.

To serve as a model for the evaluation of the commutator (5) involving the components
of the S—K tensors corresponding to the Runge—Lenz vector (13), we limit ourselves to give
only the components of the third S-K k4" tensor in spherical coordinates. Its non-vanishing
components are

r ar cos 6
K=
i 2(a+br)
sin 6
kr9 — k@r _ 7
3 3 >
00— (a +2br)cosf
37 2r(a+br)
K — (a +2br)cot csco
3T 2r(a+br)
KO — kY — (2a + 3br + br cos(26) csc? 6
T 4r(a +br)
X = (a —adr’*+br(2+cr) + (a +2br)) cot’ 6) cos 6
P 2r(a + br) )

Again, just to exemplify, we write down from the commutator (5) only the function which
multiplies the covariant derivative D, :

3r cos 6 {(=2bd(2ad — be)r® + [3bd(2b — ac) — (ad + be)(2ad — be))r?
4(a +br)3(1 +cr +dr?)? a r ac a )t o
+2(ad + bc)(2b — ac)r +aRad — bc) + (b + ac)(2b — ac)}. a7

Recall that the commutator (5) vanishes for the standard Euclidean Taub—NUT metric.
It is easy to see that the above expression (17) vanishes for all r if and only if the constants
a, b, c,d are constrained by (12).
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3. Index formulae on compact manifolds with boundary

Other quantum anomalies, namely axial ones, are connected with Dirac operators. For this
reason the analysis of the Dirac operator for the standard Euclidean Taub—NUT space [22, 23]
is extended here to the generalized Taub—-NUT metrics. We interpret the axial anomaly as the
index of the Dirac operator.

Atiyah, Patodi and Singer [26] discovered an index formula for first-order differential
operators on manifolds with boundary with a non-local boundary condition. Their formula
contains two terms, none of which is necessarily an integer, namely a bulk term (the integral of
a density in the interior of the manifold) and a boundary term defined in terms of the spectrum
of the boundary Dirac operator. A serious drawback of this formula is the requirement that
the metric and the operator be of ‘product type’ near the boundary. The generalized Taub—
NUT metric is not of product type on any reasonable domain, so we need a different way of
computing the index.

For Dirac operators on manifolds of the form [/, ] x M, where M is closed, we give
below another formula, in terms of the spectral flow of the family of Dirac operators over
the slices {t} x M, [, <t < I, without assuming that the metric is of product type near the
boundary. For periodic families, this result appeared in [27]. The APS formula is used in the
proof but one could probably give a direct proof.

3.1. The spectral flow

Let (M, g) be a closed Riemannian spin manifold of odd dimension with a fixed spin structure,
¥ is the spinor bundle and D is the (self-adjoint) Dirac operator on M. Then D has discrete
real spectrum accumulating towards £00. Moreover, the eta function

n(D, s) := dim(ker D) + Z A~ sign(X)
0s#Ae Spec D

is holomorphic for f(s) > dim(M) — 1 and extends meromorphically to C. The point
s = 0 is regular [27], and the value n(D, 0) is by definition (D), the eta invariant of D. Let
g, l1 <t < [, be a smooth family of Riemannian metrics on M, and D, the Dirac operator
on M with respect to g, and the fixed spin structure. Then

Ui, bl>t— f():=n(D)/2€R

is smooth modulo Z, so t — exp(2mif(t)) € S! is smooth. By the homotopy lifting property,
there exists a smooth lift f of exp(27if) to R, the universal cover of S', uniquely determined
by the condition f (/1) = f()).

R

i 7
// exp 0271i
i 627”f

[l1,12] —— &1

From the definition, it is evident that f ) — f@) € Z.
Definition 1. The spectral flow of the family { Dy}, <<, IS
sf(Dy,, Dy,) = f () — f(l).

This coincides with the original definition of the spectral flow for a path of self-adjoint
Fredholm operators from [27, section 7], which heuristically counts the net number of
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eigenvalues crossing 0 in the positive direction. The spectral flow is clearly a path-homotopy
invariant. Now the set of Riemannian metrics is convex inside the linear space of 2-tensors.
Therefore the spectral flow of the pair (Dll, Dzz) is well defined using any one-parameter
deformation of g;, into g;, and the associated path of Dirac operators.

3.2. A generalized APS index formula

Denote by C*° (M, X) the space of smooth spinor on M and let
% :C®(M, ) - C®(M, X)
be the spectral projections associated with D and the intervals [0, 00), respectively (—oo, 0].

The spectrum of D is discrete. So in other words, if ¢ is an eigenspinor of D of eigenvalue
T, then

T if T > 0;
otherwise;

or it T<0
0 otherwise.

M (¢r) = {O I (¢r) = {

If X is a compact spin manifold-with-boundary of even dimension, let ¥*(X) denote the
bundles of positive, respectively negative spinors. The spinor bundles £ (3X) and 2 (X)5x
over dX are canonically identified by the Clifford action of the unit normal vector field. We
will need the following generalization of the Atiyah—Patodi—Singer index formula:

Theorem 2. Let (X, g¥) be a compact spin Riemannian manifold with boundary, and
CO(X, 2%, T7) :={¢ € C¥(X, X7); 1" (¢lax) = 0}.
Then the operator D* : C*°(X, X*, I17) — C™®(X, £7) is Fredholm, and

N ~ 1
index(D*) = / A(g%) +/ TA+ =n(Dsx)
b ax 2
where T A, the transgression form of A, depends on the 2-jets of g¥ at 9X.

Recall that the A form (whose cohomology class in top dimension on a closed 4k-dimensional
manifold gives the so-called A genus) is derived from the curvature tensor via the Chern—Weil
construction:

R/4mi ) 172

Alg) i= det (sinh(R/4ni)

Proof. The fact that D* is Fredholm is standard in the theory of elliptic boundary value
problems, see, e.g., [28]. If the metric g¥ was of product type near 3X, then the Atiyah—
Patodi—Singer formula [26] on X; would read

index(D*) = / Ag®) + %H(Dax) (18)

X
(we use the opposite orientation for X as compared to [26]). In general we cannot expect
such a product structure. In a collar neighbourhood defined by normal geodesic flow from
90X, g¥ takes the form

g¥ = dr® + g
for 0 <t < € (see [29]), where g; is a smooth family of metrics on 9 X. So we first deform

smoothly the metric g¥ into a product metric near 3 X, keeping constant the metric at the
boundary and outside the fixed collar neighbourhood, using a smooth function :

t if s=0 or >3
hy = dt* + gy sy Yis,H)=10 if r=0;
0 if s=1 and r<3.
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The index can be computed from the action of D* on Sobolev spaces:

DY:HY(X, T, 117) - L*(X, £7).
The spinor bundles for different metrics are canonically identified [29]. Since by construction
the vector field 9/0¢ is normal to d X and of length 1 for all the metrics A, it follows that the
projection 1™, and hence also the space H (X, x*, TI7), do not vary with s. Let D} be the
Dirac operator corresponding to the metric i;. Then the family of bounded operators

D :H'(X,Z*, 117 — L*(X, %)
is norm continuous, thus the index stays constant during the deformation. Therefore, we may

compute index(D*) using equation (18) for the metric /.
Next we relate the A forms using the transgression form. Consider the connection

~ a .
Vi=dsA—+V’
as

on the bundle T X over [0, 1] x X, where V* is the Levi-Civita connection of the metric ;.
The curvature of V decomposes in

R =R’ +ds AO(s)
where 6 (s) is defined by the above equality. Therefore

A(V) = A(V*) +ds A O(s)
and by inspection, ® (s) depends on the 2-jets of the metric gy (). Since A(V) is closed (like
all characteristic forms), it follows that

AA(VY)

as

= dof(s). (19)
Define

1
TA := / O(s) ds.
0

By integrating (19) on [0, 1], we get A(hl) — A(/’lz) =dTA. By Stokes’s formula,

fA<h1>—/A(gX>=/ TA.
X X ax O

As defined, T A depends on the function . For us the important conclusion is the next
corollary.

Corollary 3. Let { g } 1er D€ a smooth family of metrics on X, D} the associated family of
Dirac operators on X and Dl8 x the induced Dirac operator on 0 X. Then there exists a smooth
function u(l) such that

index (D)) = u(l) + n(D}y).
Moreover, for I, < I,
indeX(D;;) - index(Dfl) = sf(Dé‘X, fox).

Proof. Clearly A(glx ) depends smoothly on /. From the construction, the transgression form
is also clearly smooth in / once we fix the auxiliary function ¢r. We define

u(l) :=/ A(glx)+/ TA(ng)
X 39X

which by theorem 2 proves the first statement.
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Using the notation from definition 1,
index(D;;) — index(DZ) =ully) —uly) + f) — fy)
= u(l) —ulp) + () = f)
+sf(Dyy, Dix)-
Thus the smooth function u(l) — u(l;) + f(I,) — f(l;) is integral valued, and so it vanishes
identically since it does at / = /. The conclusion follows by setting [ = I,. ]

3.3. Index theory on a cylinder

Let now g% be a Riemannian metric on the cylinder X := [}, ,] x M. Endow X with the
product orientation, so that {/;} x M is positively oriented and {/,} x M is negatively oriented
inside X. Let D* be the chiral Dirac operator on X. For each ¢ € [I1, [;] let g, be the metric on
M obtained by restricting g¥ to {t} x M. We denote by %, the spinor bundle over (M, g;) and
by D,, [T the Dirac operator and the spectral projections with respect to the metric g, .

As we mentioned above, there exist canonical identifications of the spinor bundle ¥, with
(X )iinixm- Consequently it makes sense to denote by ¢, the restriction of a positive spinor
from X to {t} x M.

Theorem 4. Let X = [I1, l,] x M be a product spin manifold with a smooth metric g¥ as
above. Set
C¥(X, B4, 117) := {¢ € C®(X, T*); [T} ¢, = 0, T1; ¢, = 0}.
Then
index(D* : C*(X, T%, 117) — C®(X, 7)) = sf(Dy,, D).
Note that the projection I1;, equals IT;] for the opposite orientation on {/»} x M, which is
the one induced from X.

Proof. Deform the metric g¥ in a neighbourhood of {/;} x M to a product metric as in the
proof of theorem 2. As explained there, this deformation does not change the index. The
spectral flow is also unchanged (we noted that it depends only on the two metrics on the ends).
Forly <t <D let X, :=[l;,¢t] x M C X. Then corollary 3 gives

index(D}) = u(®) + f(t) — f(1)
=u(t)+ f(t) — fy) +sf(l;,1). byDef. 1

Note that both the A volume form and the transgression TA, hence also u(¢), vanish for ¢ near
I, in the product region. Thus the smooth function u () + f(¢) — f(I;) takes values in Z, on
the other hand both u(¢) and f(t) — f(ll) vanish at t = [, so u(t) + f(t) — f(ll) vanishes
identically. The conclusion follows by setting ¢ = I. ]

Note that a similar statement concerning spectral boundary value problems appears

in [30].

4. Harmonic spinors over Berger spheres

Since the cohomology groups of S* vanish in dimensions 1 and 2, there exists a unique spin
structure on S°. Let D, be the Dirac operator corresponding to the Berger metric g; defined
in equation (7). Recall that D is essentially self-adjoint (in L?) with discrete spectrum.

Lemma 5. For A < 2, D, does not admit harmonic spinors.
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Proof. It is easy to compute the scalar curvature of g,. This is done for instance in [13].
Namely, «(g;) is constant on S3, k(g,) = (4 — A?)/12. In particular k(g;) is positive for
A < 2. Lichnerowicz’s formula proves then that ker D, = 0. ]

More generally, Hitchin [21] computed the eigenvalues of D, . In this paper we are only
interested in eigenvalues close to 0. Let us recall Hitchin’s result in this case.

Theorem 6 [21]. Let
AG) = {(p. @) e N1 22 =2/(p — @)* + 422 pq]}.

Then
dimker(D;) = N(\) := Z p+q.
(p.@)eA ()

If N()\) > O there exists € > 0 such that for |t — \| < €, the ‘small’ eigenvalues of D, are
given by families

_ 2
Tmp4w=%—dg7#l+w% (p.q) € AQM) (20)

with multiplicity p + q.

In particular, harmonic spinors appear first for . = 4 where the kernel of D, is two dimensional.
Moreover, the set of those A € (0, co) for which N (L) # 0 is discrete. For [ > 0 set

S{) = ZN(A). (21)
A<l

Of course the sum is finite for finite /.

Corollary 7. The spectral flow of the family {D,};cp, 1,1 of Berger Dirac operators equals
S() — S).

Proof. By differentiating equation (20) we see that the function + — T (¢, p, q) is strictly
increasing, so the spectral flow of the family {D;,} across t = A is precisely N (1). (Il

5. The generalized Taub-NUT metric

Let us consider the generalized Taub—-NUT metric dsi on RY\{0} ~ (0, c0) x §° given by
equation (10) in terms of the Berger metrics. We clearly need a + br > 0 for all » > 0 so we
ask thata > 0,b > 0. Also d > 0 seems reasonable in order for the metric to be defined for
large r, and even ¢ > —2/dsothat 1 +cr+dr? > Oforall 7 > 0. However, there seems to
be no reason to ask ¢ > 0, so A(r) may become large for certain values of r.

In mathematical terms, axial anomalies translate to Dirac operators with non-vanishing
index. We are interested in the chiral Dirac operator on a annular piece of R*\{0}. First set
X =1, bl x S c R4\{0} with the induced generalized Taub—NUT metric.

Theorem 8. The index of D* over (X il ds%() with the APS boundary condition is
index(D*) = S(A (L)) — S(A (1))
where the function S is given by (21).

Proof. By theorem 4 the index is equal to the spectral flow of the pair of boundary Dirac
operators. Now the metrics on the boundary spheres are constant multiples of the Berger
metrics g ), respectively g,«,). The spectral flow of a path of conformal metrics (even with
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non-constant conformal factor) vanishes by the conformal invariance of the space of harmonic
spinors [21]. Thus the spectral flow can be computed using the pair of metrics g,(,) and g,,)-
The conclusion follows from corollary 7. (]

It is a number-theoretic question to determine S(A) in general. We can give, however,
some conditions which entail the vanishing of the index.
Corollary 9. Ifc > — —*125‘1 then the generalized Taub—NUT metric does not contribute to the
axial anomaly on any annular domain (i.e., the index of the Dirac operator with APS boundary
condition vanishes).

Proof. The hypothesis implies that A(r) < 4 for all r > 0. From the remark following
theorem 6 we see that S(A(l;)) = S(A(ly)) = 0. O

We obtain as a particular case the vanishing of the index from [13]. Another case when
the index vanishes is when /; and [, are either small or large enough so that both A(/;) and
A(ly) are less than 4.

The singularity at the origin of the generalized Taub—NUT metric is removable, in the
sense that there exists a smooth extension to R*.

Theorem 10. Forl > 0 let X; be the ball X, := {r < 1} C R*, endowed with the generalized
Taub—-NUT metric ds,z(. Then

index(D*) = S(A(1)).

Proof. Deform the metric on X; smoothly into the standard metric ds? on the ball X;. Now
ds> = dr? + r>do? is a warped product near r = [, so we can further deform the warping
factor to be constant near r = I. Let hq be the resulting metric and D its Dirac operator.
The restriction of A to dX; is a multiple of g; /4, the standard metric on S3. By corollaries 3
and 7,

index(D*) = index(D{) + S(A (1))

since S(1) = 0. We use the APS index formula (18) to compute index(Dg ) = 0. Indeed, the
eta invariant of the standard sphere vanishes since the spectrum is symmetric around 0, while
the A volume form of a warped product metric vanishes by the conformal invariance of the
Pontrjagin forms. ]

6. Unbounded domains

There appear two other possibilities of constructing index problems for the metric ds%. First
we have the mixed APS-L? boundary condition on [/, o) x S; and secondly we have the L?
index problem on R*.

The metric dsf{ is of fibred cusp type at infinity in the sense of [31]. Indeed, with the
change of variables x = 1/r near r = oo, we have

2 dx 2 8H 1
dsy = (ax +Db) <F+F+mgv>' (22)
It is impossible to present here ®-operators and the associated ®-calculus Wq, (R*); we refer the
interested reader to [31-34]. The index of Dirac operators for exact ® metrics was computed
in [32] under a tameness assumption on the kernel of the family of vertical Dirac operators.
Unfortunately, (22) is not exact in the sense of [32] because of the factor d + cx + X2 A
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general but less precise index formula for fully elliptic ®-operators was given in [33] and then
improved in [34], where the case of a fibration over S !'is studied in detail.

A priori it is not at all clear if D* is Fredholm in LZ(R4), although from theorem 10,
the limit as [ — oo of the index on X; exists and equals 0. A general principle of Melrose’s
analysis of pseudodifferential algebras asserts that an operator in such an algebra is Fredholm
on appropriate Sobolev spaces if and only if it is fully elliptic. Before explaining what this is,
note that the corresponding statement for ®-operators is proved in [31].

6.1. Fully elliptic ®-operators

Let X denote the radial compactification of R*. There exists first a notion of principal symbol
for d-operators, living on the ®-cotangent bundle, a smooth extension of TR* to X.

There exists additionally a ‘boundary symbol’ map called the normal operator, which is
a star-morphism

N We(RY) — Wogors2)_g(S7)

with values in the suspended algebra [35], an algebra of parameter-dependent operators along
the fibres of the Hopf fibration. A ®-operator is called fully elliptic if both its principal symbol
and its normal operator are invertible.

Theorem 11. The Dirac operator on (R4, ds%() is not fully elliptic.

Proof. The principal symbol of D? is precisely the metric ds%, which extends to a Riemannian
metric on ®7* X . This shows that D is elliptic.

Letu : R* — (0, o0) be a function which near x = 0 equals ax + b. Define a metric &
dsf(

on R* conformal to ds% by h := "k Then the Dirac operators of the metrics / and dsg are

related by [21, proposition 1.3]:

Dy, = u’*Du=%*4,
Now note that u(x) = +/d > 0 for x = 0, and recall that the map N is multiplicative. Thus
we see that the normal operators of D;, and D are simultaneously invertible. We focus in the

rest of the proof on D,.
We want to show that D), is not fully elliptic, so we only look at the region x < /. Let

v(x) := +/d + cx + x2, so that
dx2 8H 1
h=—+>-+ .
x4 x?2 v2(x) &v

Let I, J, K be the three vector fields on S°, viewed as the quaternion unit sphere,
corresponding to the three distinguished complex structures. Let V;,0 < j < 3, be the
following ®-vector fields on X near the boundary:

Vo := x2dy, Vi = o)1, V= xJ, Vs :=xK.

These vector fields form an orthonormal frame p in ®T X, parallel in the direction of V (with
respect to the Levi-Civita covariant derivative of the metric 7). We use this frame (more
precisely, one of its lifts p to the spin bundle) to trivialize the spinor bundle. Denote by ¢’ the
Clifford multiplication by V;. After some computations, we get

N(Dy)(0) = ' (Vy +4/dc*c?)

in the above trivialization. Each integral curve C of V; has length 277 //d; let ¢ be the arc-length
parameter on C. Let ¥ be a spinor with

(Vi +/dc*)y = 0. (23)
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We can assume that v is a section of X%, the other case is similar. The restriction of v to C is
given by a curve

[0,27/3/d) 5t — ¥ (1) € C,

where the two factors of C are the =i eigenspaces of c?c®. In other words, ¥ (t) =
(Y4 (1), ¥_ (1)) with c*c*.(t) = Fiv.(t). Then equation (23) reduces to

Y1) £iVdyL(t) =0

and this equation does have solutions, namely V4 (¢) = eFir ﬁw(O). The point is that the
solution is periodic of period equal to the length of C. Equivalently, ¥+ can be any smooth
section in the complex line bundle over S? associated with the Hopf principal S'-bundle
§3 — 52 and the +1 representations of S' on C. O

Thus our Dirac operator is not Fredholm in L2(R4, Y). However, it may still have a
finite-dimensional kernel and cokernel. We leave open the question of determining the index
in this case, but we conjecture it to be 0.

The same argument shows that the Dirac operator on [/, 00) x S* with mixed APS-L?
boundary conditions is not Fredholm either. Again, we leave open the question of determining
its index.

7. Concluding remarks

In spacetimes admitting Killing—Yano tensors there are additional supercharges in the dynamics
of pseudo-classical spinning particles. On the other hand, there is a relationship between the
absence of gravitational anomalies and the existence of K—Y tensors. For scalar fields,
the decomposition (15) of S—K tensors in terms of K-Y tensors guarantees the absence of
gravitational anomalies. Otherwise operators constructed from symmetric tensors are in
general a source of anomalies proportional to the Ricci tensors.

However, for the axial anomaly the role of K-Y tensors is irrelevant. The axial anomaly
vanishes for any generalized Taub—NUT metric where the constant ¢ satisfies the inequality
from corollary 9. For general constants ¢, the axial anomaly on annular domains or balls is
given by a number-theoretic formula in terms of the radii (theorems 8, 10). As the radius
of the ball increases to infinity, the axial anomaly on the ball becomes 0. Surprisingly, the
corresponding Dirac operator on R* is not Fredholm in L.
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